

State of the art of FOSS4G for topology and network analysis

Vincent Picavet

FOSS4G 2010 - Barcelona

Oslandia, who's that?

Oslandia

Young French SME specialised in Open Source GIS

PostGIS experts: Vincent Picavet & Olivier Courtin

Mainly Focuses on:

- **Spatial Databases** (PostGIS, SpatiaLite)
- OGC, ISO, INSPIRE Standards and SDI architecture
- Complex analysis: Routing, Network and Graph Solutions

Oslandia's ecosystem:

Oslandia's Technologies

3D GDAL GEOS

GRASS GraphServer INSPIRE MapServer

OGC PgRouting PostGIS

PostgreSQL Spatialite TinyOWS

TileCache PyWPS QGIS

Oslandia, Find us at FOSS4G

Running long and complexes processes with PostGIS

Vincent Picavet, Wednesday - 12h00 - Sala 6

PostGIS meets the third dimension

Olivier Courtin, Wednesday - 12h30 - Sala 6

State of the Art of FOSS4G for Topology and Network Analysis

Vincent Picavet, Thursday - 14h30 - Sala 5

Breakout Session: Spatial Databases

Code Sprint on Friday: PostGIS

Presentation plan

- Introduction
- What is topology ?
- What is Network Analysis?
- FOSS4G for topology & NA
- Conclusion
- Perspectives
- Questions

Introduction

Back to the roots

Problem of the seven bridges of Koenigsberg

 $e^{i\cdot\pi}+1=0$

Topology and graph theory was born!

Not so long ago...

- 4 colors map
 - «Given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color»
- Conjecture in 1852 (Francis Guthrie)
- Proof in 1976
- First computer-assisted proof
- GIS Problems lead to complex theoretical issues

Nowadays GIS application fields

- Transportation networks at large
 - Path finding & Routing
 - Network flow
 - Fleet management
 - g ■ ■ ■
- Resource allocation
- Crisis management
- Hydrology
- Computer networks
- Geomarketing
- Mobile applications

g • • •

What is topology?

Topology - General

OSLANDIA

General:

 «Area of mathematics concerned with spatial properties that are preserved under continuous deformations of objects»

GIS:

- «Spatial relationship between geographic features based on location»
- Implicit on maps: eye-brain system interprets it
- Needs to be explicit for computer systems
- Relations
 - Connectivity, Adjacency, Containment, Proximity, Relative Directions
- Rules based on relations

- aka «Spaghetti model»
- 1-1 translation of analog map
- Line = series of ordered (x, y) points
- Polygon = closed loops define boundaries
- Different lines/Polygons = independent objects
- No explicit connectivity & neighbouring info
- Simple and efficient
 - Cartographic display
 - Used by most CAD DB

Why topology?

- Insure correct boundaries
- Enhance analysis
- Insure data quality
- Topological editing and digitizing
- Needed to do network analysis

Get rid of the Spaghetti Monster!

GIS Formats & topology

- Your very own topology
 - Feature-attribute based
 - Use relations and create rules
- Classic topology model
 - Node, arc/edge, face
 - Connectivity, Direction, Adjacency

- Most GIS data format → no topology
 - Except : ArcInfo Coverage, TIGER, DLG, OSM (partly)...

From spaghettis to topological zen

- Multiple ways to build topology from geometry
- Build your own model or use a standard one
- Classic build process steps
 - Extract all shared vertices as nodes
 - Create edges between nodes (lines & polygon boundaries)
 - Create faces with edges (polygons)
- Data cleaning
 - Automatic
 - Semi automatic
 - Manual

Clean & Validate with topology rules

Standardization

- Main standard, DB-oriented :
 - BS ISO/IEC 13249-3:2006 aka SQL/MM
- Defines model and operations
- Node-edge-face model, with geometry
 - ST_NODE, ST_EDGE, ST_FACE views
- ST_CreateTopoGeo, ST_ValidateTopoGeo
- Editing functions
- Topology-network model and operations
 - Creation, validation, editing
 - Shortest Path

What is Network Analysis?

Graph Theory – Network theory

• Graph Theory :

«Study of graphs: mathematical structures used to model pairwise relations between objects from a certain collection.»

Networks

- Nodes & Edges
- Directed / Undirected
- Weighted or not
- Definition varies...
- Social Networks, Biology, Link analysis, centrality measures...

Some network analysis problems

- Enumeration
- Sub-graphs
- Colouring
- Routing
 - Minimum spanning tree
 - Route inspection problem
 - Shortest path problem
 - Steiner tree
 - Travelling salesman problem
- Network flow
- Visibility graph
- Covering problems
- Graph classes

FOSS4G Tools

FOSS4G Softwares

- PostGIS
- PgRouting
- GvSIG
- GraphServer
- Spatialite
- GRASS

PostGIS

- SQL/MM Topology Model
- Partial implementation
 - No network analysis
- Node-Edge-Face
- Create, Validate
- Raw edit
- SQL/MM interface for editing, Geo/topo operations

SELECT topology.CreateTopology(name, [srid], [tolerance [srid]], [tolerance]); SELECT * FROM topology.ValidateTopology(name) ; -- topology validation

```
INSERT INTO mytopology.edge ...;
INSERT INTO mytopology.face ...;
INSERT INTO mytopology.node ...;
SELECT ST_AddIsoNode(...);
SELECT ST_ChangeEdgeGeom(...);
```


SELECT topology.Geometry(TopoGeometry); -- get geometry from topology object SELECT topology.DropTopology(name);

PgRouting

- PostGIS Plugin
- Own network model
- Shortest path
- Driving distances
- Travelling Salesman Problem
- Algorithms
 - Dijkstra
 - g **A***
 - Shooting star (with restrictions)
- Network building tool & OSM import tool

SELECT * FROM shortest_path_astar('SELECT gid AS id, source::int4, target::int4, length::double precision AS cost, x1, y1, x2, y2 FROM dourol', 3, 7, false, false);

GvSIG – Topology extension

- Full topology management
- Multi-Layer topology builder
- Set of topology rules system
 - Complex parameterized rules
 - Multi-layer rules
- Topology validation & partial validation
- Topological digitizing
- Topology exceptions management
- Automated, semi-automated and manual cleaning
- Full GUI
 - Native GvSIG integration
- Geoprocessing

generalization, Voronoi, Poly2lines, clean, translate...

GvSIG - Network extension

- Network Analysis
- Topology builder
 - Save / reload function (specific format)
- Interactive GUI for network management
- Algorithms
 - Shortest path
 - Connectivity
 - Minimal spanning tree
 - Origin/destination matrix
 - Finding providers for events
 - Service zone

GvSIG - Network extension

GraphServer

- Standalone routing server
- Algorithms
 - Shortest path (Fast Dijkstra implementation)
 - Driving distances
- Focus on multimodal and GTFS data integration
- OSM import tool
- HTTP interface
- Highly customizable
 - C core
 - Python library
 - Hooks to use as a framework
- Own SQLite data format
- Used in production (Trimet, MapQuest...)

Spatialite

- SQLite-based embedded spatial database framework
- Routing functionalities
- SQL interface
- Network building tools (with GUI)
- Query GUI
 - integrated with Spatialite GUI
- Algorithm
 - Shortest path (Dijkstra)

GRASS

- Native N-E-F topology
 - Built automatically
 - Supports digitizing
 - Cleaning module & network maintenance (v.clean, v.net)
- Graph & network analysis modules
 - Through DGLib (Directed Graph Library)
 - Algorithms
 - Shortest path
 - g TSP
 - Resources allocation
 - Minimum Steiner trees
 - Iso-distances
 - Connectivity

- (v.net.path, d.path, v.net.timtable)
- (v.net.salesman)
- (v.net.alloc)
- (v.net.steiner)
- (v.net.iso)
- (v.net.connectivity)

Grass GUI

Scriptable

Frameworks

- Boost Graph Library
- Parallel Boost Graph Library

R - igraph

BGL & PBGL

- Boost Graph Library
 - «standard» C++ library
 - High quality & highly customizable
 - Efficient algorithms
- Implements
 - Shortest Path (Dijkstra, Bellman-Ford, Johnson)
 - Minimum Spanning Tree (Kruskal, Prims)
 - Connected components (& strongly & dynamic)
 - Sorting & ordering
 - Colouring
 - Transpose
- Parallel BGL
 - Distributed storage and algorithms
 - Research platform

R - igraph

- Statistics framework
- igraph: simple graphs and network analysis
- Graph generation
- Graph manipulation
- Visualization
- Algorithms
 - Shortest path
 - Minimum Spanning Tree
 - Connectivity
 - Structural properties
 - g ■ ■ ■

Visualization softwares

Graph visualization is a problem on its own

What's best for you - Topology?

What's best for you -- Network Analysis

Perspectives and issues

- Huge volumes
 - Global earth transportation network
 - Multimodal
 - Time dimension
- Parallel processing
- Live data
 - Near-realtime updates
- Interoperability
 - Conversion tool
 - Smooth integration between GIS and large network analysis tools

That's all folks!

Want to know more? Ask now or write to:

Vincent Picavet vincent.picavet@oslandia.com

www.oslandia.com

