The New Time Series Toolbox

Next Generation of Sensor Web and Time Series Processing

Bojan Božić, MSc
The Time Series Toolbox

- A set of applications and software components with a common API
- High-level Framework allowing efficient access to, processing, and presentation of semantically enriched time series
- For building services and applications
- Works with time series data (record, store, process, publish ...)

![Time Series Toolbox Diagram]
Why do you need a Time Series Toolbox?

- Components are easy to extend and to replace by alternatives (e.g. in order to improve performance, to access new types of data, or to assure conformance with emerging standards)

- Components can be chained to provide more sophisticated processing capabilities or used in parallel to provide alternative means of accessing, storing, and presenting data

- The control components allow dynamic re-configuration of components and data flow within applications

- Provided applications can be either used as educational material by developers, or used as they are by end-users, or extended and customized to meet particular requirements
Components

- Sensor configuration and access to sensor data
- Read and write access to time series stored in services, files, and databases
- Service interfaces
- Processing and annotation of time series
- Dynamic control of data flow, and the behavior of data handlers and processing components
Design Goals

- Modular Architecture: use the components you like or need, not everything or nothing

- Standards-based: e.g. Sensor Observation Service

- Flexible Design: from simple float values to complex data structures

- Extensible: well-defined interfaces allow easy extension
Environment / Requirements

- Main language: Java 1.6

- One component written in Python (→ Jython)

- Can be used in all types of applications:
 - Web services (J2EE, etc.)
 - Command-line applications
 - Desktop GUI applications
Architecture

- Data Handlers
- Processing and Control Components
- Applications and Services

Diagram:

- SOS Frontend
- Universal Data Pump
 - Time Series API
 - Formula 3
 - Caching
 - SOS DataSource
 - CSV DataSource
 - RRD Datasource
 - AnySen Datasource
SOS DataHandler

- Accessing Sensor Observation Services
- Read: Observations, SensorML, Features
- Write: Observations, RegisterSensor
- Flexible Parser (e.g. SOS 1.0 / 0.31)
CSV DataHandler

- Access Comma Separated Value Files
- Read and write access
- Flexible configuration
 - Separators
 - Formats
 - Values

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>TimeSeries 1: Temperature</th>
<th>TimeSeries 2: Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Temp.</td>
<td>WindVel</td>
</tr>
<tr>
<td>090925</td>
<td>24.3°</td>
<td>8.2 m/s</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

CSV File
RRD DataHandler

- Round Robin Database (http://oss.oetiker.ch/rrdtool/)
- Currently read-only access to data
- Integration of existing RRD files (e.g. from system monitoring applications)
AnySen DataHandler

- Data acquisition directly from a sensor
- Designed for serial streaming sensors
- Flexible configuration of parser
- Plug & measure – get config from repository
Architecture

- Data Handlers
- Processing and Control Components
- Applications and Services

<table>
<thead>
<tr>
<th>SOS Frontend</th>
<th>Universal Data Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Series API</td>
<td>Time Series API</td>
</tr>
<tr>
<td>Formula 3</td>
<td>Caching</td>
</tr>
<tr>
<td>SOS DataSource</td>
<td>CSV DataSource</td>
</tr>
</tbody>
</table>
Formula 3

- “Time Series Processor”
- Read time series data from DataSources via TSAPI
- Process data:
 - \(< [n] \times 2 >\)
 - \(< [n-2 .. n].sum >\)
 - \(< (t-3 \text{ hours} .. t).mean > \text{ every 30 mins}\)
- Output time series data via TSAPI
Formula 3

- Functionality:
 - Calculation (arithmetic)
 - Parameters for formulas
 - Time patterns, slot/range selection
 - Conditions
 - Predefined functions, user defined functions

- Example use cases:
 - Aggregation, mean values, etc.
 - Filtering, classification
Formula 3 - Implementation

- Design goal: usable as a „standalone“ library on major platforms (Java, .NET, “native”)
- Implemented in Python
- TS Toolbox contains Formula 3 running on Jython
Caching

- Store time series data in local database
- Temporary storage
- Use cases: caching, prefetching, local storage, etc.
- Currently implements configurable prefetching
Pipe Oriented Architecture (POA)

- Objectives:
 - Main operation is transport and processing of time series
 - Pipes for connecting data sources and data sinks
 - Pipes can also incorporate processing components (like F3)
 - Managers for control and coordination of processing components, data handlers, and pipes

- Managers:
 - Device Manager: manages data handlers
 - System Manager: Analyses the current system configuration
 - Pipe Manager: Builds pipes and passes events
Architecture

- Data Handlers
- Processing and Control Components
- Applications and Services
SOS Frontend

- Sensor Observation Service Frontend to TSAPI
- Serve data from multiple data sources
- On-the-fly processing using Formula 3
- Local caching/prefetching of data
- Based on 52° North SOS
- SensorML generation/transformation with XSLT
SOS Frontend: Application Schema
SOS Frontend: Use Cases

- SOS interface to DataSource (CSV, legacy, etc.)
- SOS with on-the-fly processing
- Cascading SOS: custom views, transformations, caching, etc.
- Data preparation for reporting
- ...

05.05.10
Universal Data Pump

- Read data from a DataSource
- Write to one or more DataSink(s)
- Configurable (config file and commandline)
- Batch processing
- CSV → SOS, SOS → CSV, Legacy → SOS, AnySen → SOS, etc.
Data Pump: Example Scenario

Export data from SOS into a CSV file (e.g. for legacy modeling applications)
Georeferenced Timeseries Editor (GTE)
GTE: What is it?

- A generic desktop application, which allows viewing and editing of georeferenced time series data

- A toolbox for building specialized applications capable of presenting a common and combined view on time series data from different sources

- The main GTE components are the connectors (TS-Toolbox data handlers, and processing components), central GTE controller component, and the interactive viewer windows, which can be combined and configured in a flexible way

- Both, connectors and viewers can be easily added at runtime without the need to recompile or reconfigure the application
Time Series Toolbox Availability

- Developed by AIT within the SANY project
- Available under dual license: Open source (GPL) and commercial license
- Prototype release at: http://sourceforge.net/projects/timeseriestool/
- New full release planned shortly
- For more info contact: bojan.bozic@ait.ac.at
AIT Austrian Institute of Technology
your ingenious partner

Bojan Božić, MSc
Safety & Security
Information Management and eHealth

AIT Austrian Institute of Technology GmbH
4333 Seibersdorf | Austria
T +43(0) 50550-3190 | M +43(0) 664 2351 800
bojan.bozic@ait.ac.at | http://www.ait.ac.at